
The Geometry of the Chapter House Windows at 

York Minster 
 

 
 

The chapter house windows have been described as “Geometrical [Decorated] at its most 

handsome.” 
1
  The excellence of the tracery derives in no small measure from the three 

large circles in the head of each window.  It is not at all straightforward, if it be possible 

at all, to fit three equal circles into an existing arch. John Pritchard in 1844 inserted 

tracery based on the York chapter house windows in the re-opened mediaeval east 

window of the Lady Chapel at Llandaff ,
2
 but he was constrained to make the upper 

circle much smaller than the other two. The three circles were probably the starting point 

of the design, and the arch was fitted round them. 

 

The centres from which the arch arcs were struck must, by symmetry, lie on the common 

tangents of the upper circle and each of the lower circles. They must also lie on the 

horizontal line through the springing points of the arch, as otherwise the arch would be 

segmental or horseshoe. 



 

Naturally the centres of the three circles lie on the vertices of an equilateral triangle. If 

the sloping sides of this triangle are produced downwards, the horizontal line through the 

springing points makes with them another equilateral triangle. 
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If the distance along the common tangent to the centre of the arch arc (AB in Figure 1), 

is large in relation to the radii of the circles, the springing point of the arch, D, falls 

within the base of the equilateral triangle CGH.  If it is comparatively small, the 

springing point falls outside the base of the equilateral triangle (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the York windows, the springing points are at the lower vertices of the equilateral 

triangle, so that points C and D in Figure 2 coincide. It is  possible to examine the 

geometry, to see how AB relates to the radii of the circles in order to achieve this 

coincidence. It is unlikely that we shall recover the thought processes of the designer, but 

we shall establish the design which he created. 

 

In Figure 2, then, let the circles have unit radius, so AH = AE = FE = 1. We obtain 

expressions for BC and for BD in terms of AB, and then equate them. 

 

Triangle ABC is a 30º,60º,90º triangle, so AB:BC = √3:2, so BC = AB x (2/√3) 

 

Triangle EAB is right-angled, so by Pythagoras, EB
2
 = AB

2
 + 1

2
. 

FEB is a straight line, as the centres of touching circles and their point of contact lie on 

as straight line, therefore BF = √(AB
2
 + 1) + 1. 

 

BD = BF, so equating BC and BD,  
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AB x (2/√3) =  √(AB
2
 + 1) + 1. 

so (2AB - √3)/ √3 =  √(AB
2
 + 1) 

so, squaring both sides: (4AB
2
 - 4√3AB + 3)/3 = AB

2
 + 1 

so 4AB
2
 - 4√3AB = 3AB

2
 

 

 

AB cannot be 0, or there would be no arch,  

 

 

 

 

 

 

 

 

 

 

so dividing by AB, 

AB = 4√3. 

Since BC = AB x (2/√3),  

BC =  4√3 x (2/√3) 

       =  8 

therefore, from triangle ABC, AC = 4,  

therefore, since AH = 1, CH = HG = GC = 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3 
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The tracery recognises this fivefold length, as there are five lights, equally spaced, 

though the mullions are of two grades. The head of each light consists of arcs of radius 1 

unit, struck from points D,E,F,G,H and I, one unit apart (Figure 3), so they contain 

equilateral triangles. 

 

The tall central lancet has centres A and L (Figure 3), which are also the centres of the 

arcs of the arch. The radius is 6 units, so the arcs of the tall lancet must necessarily touch 

the lower circles respectively. 

 

The arcs of the outer lancets are struck from centres D,F,G and I, with radius 2 units, so 

they also contain equilateral triangles, and the apex of each lancet lies on the 

circumference of one of the lower circles where it is cut by a side of the main equilateral 

triangle. 

 

The manner of fitting a circle in the head of these outer lancets is shown. 

The arcs of the larger lancet are centred on G and I and have radius 2 units. Arcs of the 

small lancets are also centred on G and I and have radius 1 unit. The circle therefore 

must have diameter 1 unit, or radius ½ unit. To locate its centre, set the compasses to 1½ 

units and strike arcs from G and I to see where they intersect, or from I so that it 

intersects the centre line. 

 

The rest of the design is decoration, though the nine-foils in the large circles deserve 

special comment. There is no Euclidean construction for a nonagon, so trial and error 

may have been used. Any error in the compass setting is multiplied by 9 as the circle is 

stepped round, so it is a simple matter to achieve sufficient accuracy. More sophisticated 

division of a circle is shown by the gear wheels in the clocks of Wells and Salisbury.  
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